86 research outputs found

    Identification of atrial fibrillation drivers by means of concentric ring electrodes

    Get PDF
    The prevalence of atrial fibrillation (AF) has tripled in the last 50 years due to population aging. High-frequency (DFdriver) activated atrial regions lead the activation of the rest of the atria, disrupting the propagation wavefront. Fourier based spectral analysis of body surface potential maps have been proposed for DFdriver identification, although these approaches present serious drawbacks due to their limited spectral resolution for short AF epochs and the blurring effect of the volume conductor. Laplacian signals (BC-ECG) from bipolar concentric ring electrodes (CRE) have been shown to outperform the spatial resolution achieved with conventional unipolar recordings. Our aimed was to determine the best DFdriver estimator in endocardial electrograms and to assess the BC-ECG capacity of CRE to quantify AF activity non-invasively

    Reachability in High Treewidth Graphs

    Full text link
    Reachability is the problem of deciding whether there is a path from one vertex to the other in the graph. Standard graph traversal algorithms such as DFS and BFS take linear time to decide reachability however their space complexity is also linear. On the other hand, Savitch's algorithm takes quasipolynomial time although the space bound is O(log2n)O(\log^2 n). Here, we study space efficient algorithms for deciding reachability that runs simultaneously in polynomial time. In this paper, we show that given an nn vertex directed graph of treewidth ww along with its tree decomposition, there exists an algorithm running in polynomial time and O(wlogn)O(w\log n) space, that solves reachability in the graph

    FSK-based Simultaneous Wireless Information and Power Transfer in Inductively Coupled Resonant Circuits Exploiting Frequency Splitting

    Full text link
    Inductively coupled resonant circuits are affected by the so-called frequency splitting phenomenon at short distances. In the area of power electronics, tracking of one of the peak frequencies is state-of-the-art. In the data transmission community, however, the frequency splitting effect is often ignored. Particularly, modulation schemes have not yet been adapted to the bifurcation phenomenon. We argue that binary frequency shift keying (2-ary FSK) is a low-cost modulation scheme which well matches the double-peak voltage transfer function H(s)H(s), particularly when the quality factor QQ is large, whereas most other modulation schemes suffer from the small bandwidths of the peaks. Additionally we show that a rectified version of 2-ary FSK, coined rectified FSK (RFSK), is even more attractive from output power and implementation points of view. Analytical and numerical contributions include the efficiency factor, the impulse response, and the bit error performance. A low-cost incoherent receiver is proposed. Theoretical examinations are supported by an experimental prototype

    Frontiers in Non-invasive Cardiac Mapping: Rotors in Atrial Fibrillation-Body Surface Frequency-Phase Mapping

    Full text link
    [EN] Experimental and clinical data demonstrate that atrial fibrillation (AF) maintenance in animals and groups of patients depends on localized reentrant sources localized primarily to the pulmonary veins (PVs) and the left atrium(LA) posterior wall in paroxysmal AF but elsewhere, including the right atrium (RA), in persistent AF. Moreover, AF can be eliminated by directly ablating AFdriving sources or “rotors,” that exhibit high-frequency, periodic activity. The RADAR-AF randomized trial demonstrated that an ablation procedure based on a more target-specific strategy aimed at eliminating high frequency sites responsible for AF maintenance is as efficacious as and safer than empirically isolating all the PVs. In contrast to the standard ECG, global atrial noninvasive frequency analysis allows non-invasive identification of high-frequency sources before the arrival at the electrophysiology laboratory for ablation. Body surface potential map (BSPM) replicates the endocardial distribution of DFs with localization of the highest DF (HDF) and can identify small areas containing the high-frequency sources. Overall, BSPM had a sensitivity of 75% and specificity of 100% for capturing intracardiac EGMs as having LARA DF gradient. However, raw BSPM data analysis of AF patterns of activity showed incomplete and instable reentrant patterns of activation. Thus, we developed an analysis approach whereby a narrow band-pass filtering allowed selecting the electrical activity projected on the torso at the HDF, which stabilized the projection of rotors that potentially drive AF on the surface. Consequently, driving reentrant patterns (“rotors”) with spatiotemporal stability during >70% of the AF time could be observed noninvasibly after HDFfiltering. Moreover, computer simulations found that the combination of BSPM phase mapping with DF analysis enabled the discrimination of true rotational patterns even during the most complex AF. Altogether, these studies show that the combination of DF analysis with phase maps of HDF-filtered surface ECG recordings allows noninvasive localization of atrial reentries during AF and further a physiologically-based rationale for personalized diagnosis and treatment of patients with AF.Study supported in part by the Spanish Society of Cardiology (Becas Investigacio´ n Clı´nica 2009); the Universitat Polite` cnica de Vale`ncia through its research initiative program; the Generalitat Valenciana Grants (ACIF/2013/021); the Ministerio de Economia y Competividad, Red RIC; the Centro Nacional de Investigaciones Cardiovasculares (proyecto CNIC-13); the Coulter Foundation from the Biomedical Engineering Department (University of Michigan); the Gelman Award from the Cardiovascular Division (University of Michigan); the National Heart, Lung, and Blood Institute grants (P01-HL039707, P01-HL087226 and R01-HL118304), and the Leducq FoundationAtienza, F.; Climent, A.; Guillem Sánchez, MS.; Berenfeld, O. (2015). Frontiers in Non-invasive Cardiac Mapping: Rotors in Atrial Fibrillation-Body Surface Frequency-Phase Mapping. Cardiac Electrophysiology Clinics. 7(1):59-69. https://doi.org/10.1016/j.ccep.2014.11.002S59697

    Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: A clinical-computational study

    Full text link
    Background: Ablation is an effective therapy in atrial fibrillation (AF) patients in which an electrical driver can be identified. Objective: The aim of this study is to present and discuss a novel and strictly non-invasive approach to map and identify atrial regions responsible for AF perpetuation. Methods: Surface potential recordings of 14 patients with AF were recorded using a 67-lead recording system. Singularity points (SPs) were identified in surface phase maps after band-pass filtering at the highest dominant frequency (HDF). Mathematical models of combined atria and torso were constructed and used to investigate the ability of surface phase maps to estimate rotor activity in the atrial wall. Results: The simulations show that surface SPs originate at atrial SPs, but not all atrial SPs are reflected at the surface. Stable SPs were found in AF signals during 8.3±5.7% vs. 73.1±16.8% of the time in unfiltered vs. HDF-filtered patient data respectively (p<0.01). The average duration of each rotational pattern was also lower in unfiltered than in HDF-filtered AF signals (160±43 vs. 342±138 ms, p<0.01) resulting in 2.8±0.7 rotations per rotor. Band-pass filtering reduced the apparent meandering of surface HDF rotors by reducing the effect of the atrial electrical activity taking place at different frequencies. Torso surface SPs representing HDF rotors during AF were reflected at specific areas corresponding to the fastest atrial location. Conclusion: Phase analysis of surface potential signals after HDF-filtering during AF shows reentrant drivers localized to either the LA or RA, helping in localizing ablation targetsThis work was supported in part by the Spanish Society of Cardiology (Becas Investigacion Clinica 2009); the Universitat Politecnica de Valencia through its research initiative program; the Generalitat Valenciana grant (ACIF/2013/021); the Ministerio de Economia y Competitividad, Rod RIC; the Centro Nacional de Investigaciones Cardiovasculares (proyecto CNIC-13); the Coulter Foundation from the Biomedical Engineering Department, University of Michigan; the Gelman Award from the Cardiovascular Division, University of Michigan; the National Heart, Lung, and Blood Institute grants (P01411.039707, P01-1111187226, and R01-11L118304); and the Leducq Foundation. Dr Femandez-Aviles served on the advisory board of Medtronic and has received research funding from St Jude Medical Spain. Dr Berenfeld has received research support from Medtronic and St Jude Medical; he is a colbunder and scientific officer of Rhythm Solutions. None of the companies disclosed financed the research described in this article.Rodrigo Bort, M.; Guillem Sánchez, MS.; Climent, AM.; Pedrón Torrecilla, J.; Liberos Mascarell, A.; Millet Roig, J.; Fernandez-Aviles, F.... (2014). Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: A clinical-computational study. Heart Rhythm. 11(9):1584-1591. https://doi.org/10.1016/j.hrthm.2014.05.013S1584159111

    Personalized Modeling of Atrial Activation and P-waves: a Comparison Between Invasive and Non-Invasive Cardiac Mapping

    Get PDF
    Biatrial personalized models incorporating functional and anatomical features are becoming a promising tool for planning therapy for patients with atrial fibrillation (AF). Conduction velocity (CV) is one of the main features to be matched during the process of functional personalization, as it can identify electrical abnormalities in the cardiac tissue. The spatial distribution of CV can be estimated from local activation times (LAT) maps from non-invasive electrocardiographic imaging (ECGI) or invasive electroanatomical mapping systems (EAMS). We investigated the effect of using either invasive LAT maps from EAMS or non-invasive LAT maps from ECGI to personalize two biatrial models by comparing the virtual P-waves obtained from these LAT maps with the measured P-waves from the surface electrocardiogram (ECG). For both modalities – ECGI and EAMS – we found a qualitative match between simulated and measured P-waves but observed quantitative differences. The root-mean-square error (RMSE) between measured and simulated signals for patient A was 0.26±0.11 mV and 0.38±0.31 mV, while for patient B it was 0.21±0.09 mV and 0.14±0.05 mV for EAMS and ECGI, respectively. The correlation between measured and simulated signals from ECGI and EAMS was 0.69±0.34 and 0.71±0.26 for patient A and 0.71±0.18 and 0.72±0.18 for patient B. Our results suggest that LAT maps from ECGI and EAMS show differences, which are also reflected in the computed P-wave on the body surface

    An interdisciplinary vision of "Cova Beneito"

    Get PDF
    Aquest freball ofereix una visió interdisciplimiria i global dels nivells del paleolític mijà i superior de la cova Beneito (Muro del Comtat, Alacant). L'estudi sedimentològic, palinològic i faunístic de la seua dilatada estratigrafia aporta dades imprescindibles per al reconeixement de l'lnterestadial II-III, per a la consolidació de la climatoestratigrafia del Pleistocé Superior i, a més, una comprensió millor de la relació home-medi. El desenvolupamenr cultural ofereix altenatives interessants per a la seqüència mediterrànea i aporta la novetat de I'Aurinyacià evolucionat final a l'ambit valencià. S'hi dedica una apartat a l'estudi d'una tomba ritual secundària solutriogravetiana.The present work attempts to offer an interdisciplinary and global vision on the levels of the Middle and Upper Paleolithic period in "Cova Beneito" (Muro-Alicante-Spain). The sedimentological, palynological and faunistic study of its vast stratigraphy bring forward essential facts for the identification of the midlast glacial stage and for strengthening of the climatostratigraphy of the Upper Pleistocene, as well as for a better reconstruction of the retationship between man and environment. The cultural development supplies interesting alternatives to the Mediterranean sequence, and brings out the novelty of the Evolued Aurignacian in the Valencian area. There is a special section on the study of a secondary Solutrean-Gravettian ritual burial.El presente trabajo ofrece una visión interdisciplinar y global de los niveles del Paleolítico Medio y Superior de Cova Beneito (Muro- Alicante). El estudio sedimentológico, palinológico y faunístico de su dilatada estratigrafía aportan datos imprescindibles para el reconocimiento del Interestadial II-III y el afianzamiento de la climatoestratigrafía del Pleistoceno Superior, así como para una mejor comprensidn de la relación hombre-medio. El desarrollo cultural ofrece alternativas interesantes a tu secuencia mediterránea, aportando la novedad del Auriñaciense evolucionado final al ámbito valenciano. Se dedica un apartado al estudio de un enterramiento ritual secundario Solútreogravetiense

    Role of atrial tissue remodeling on rotor dynamics an in vitro study

    Full text link
    The objective of this article is to present an in vitro model of atrial cardiac tissue that could serve to study the mechanisms of remodeling related to atrial fibrillation (AF). We analyze the modification on gene expression and modifications on rotor dynamics following tissue remodeling. Atrial murine cells (HL-1 myocytes) were maintained in culture after the spontaneous initiation of AF and analyzed at two time points: 3.1 +/- 1.3 and 9.7 +/- 0.5 days after AF initiation. The degree of electrophysiological remodeling (i.e., relative gene expression of key ion channels) and structural inhomogeneity was compared between early and late cell culture times both in nonfibrillating and fibrillating cell cultures. In addition, the electrophysiological characteristics of in vitro fibrillation [e.g., density of phase singularities (PS/cm2), dominant frequency, and rotor meandering] analyzed by means of optical mapping were compared with the degree of electrophysiological remodeling. Fibrillating cell cultures showed a differential ion channel gene expression associated with atrial tissue remodeling (i.e., decreased SCN5A, CACN1C, KCND3, and GJA1 and increased KCNJ2) not present in nonfibrillating cell cultures. Also, fibrillatory complexity was increased in late- vs. early stage cultures (1.12 +/- 0.14 vs. 0.43 +/- 0.19 PS/cm(2), P < 0.01), which was associated with changes in the electrical reentrant patterns (i.e., decrease in rotor tip meandering and increase in wavefront curvature). HL-1 cells can reproduce AF features such as electrophysiological remodeling and an increased complexity of the electrophysiological behavior associated with the fibrillation time that resembles those occurring in patients with chronic AF.This work was supported in part by grants from the Spanish Ministry of Science and Innovation (PLE2009-0152), the Instituto de Salud Carlos III (Ministry of Economy and Competitiveness, Spain: PI13-01882, PI13-00903, and TEC2013-50391-EXP), and the Red de Investigacion Cardiovacular (RIC) from Instituto de Salud Carlos III (Ministry of Economy and Competitiveness, Spain).Climent, A.; Guillem Sánchez, MS.; Fuentes, L.; Lee, P.; Bollensdorff, C.; Fernandez-Santos, M.; Suarez-Sancho, S.... (2015). Role of atrial tissue remodeling on rotor dynamics an in vitro study. AJP - Heart and Circulatory Physiology. 309(11):H1964-H1973. doi:10.1152/ajpheart.00055.2015SH1964H197330911Allessie, M. (2002). Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovascular Research, 54(2), 230-246. doi:10.1016/s0008-6363(02)00258-4Allessie, M. A., de Groot, N. M. S., Houben, R. P. M., Schotten, U., Boersma, E., Smeets, J. L., & Crijns, H. J. (2010). Electropathological Substrate of Long-Standing Persistent Atrial Fibrillation in Patients With Structural Heart Disease. Circulation: Arrhythmia and Electrophysiology, 3(6), 606-615. doi:10.1161/circep.109.910125Atienza, F., Almendral, J., Jalife, J., Zlochiver, S., Ploutz-Snyder, R., Torrecilla, E. G., … Berenfeld, O. (2009). Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm, 6(1), 33-40. doi:10.1016/j.hrthm.2008.10.024Atienza, F., Almendral, J., Ormaetxe, J. M., Moya, Á., Martínez-Alday, J. D., Hernández-Madrid, A., … Jalife, J. (2014). Comparison of Radiofrequency Catheter Ablation of Drivers and Circumferential Pulmonary Vein Isolation in Atrial Fibrillation. Journal of the American College of Cardiology, 64(23), 2455-2467. doi:10.1016/j.jacc.2014.09.053Bikou, O., Thomas, D., Trappe, K., Lugenbiel, P., Kelemen, K., Koch, M., … Bauer, A. (2011). Connexin 43 gene therapy prevents persistent atrial fibrillation in a porcine model. Cardiovascular Research, 92(2), 218-225. doi:10.1093/cvr/cvr209Bollmann, A., Sonne, K., Esperer, H.-D., Toepffer, I., & Klein, H. U. (2002). Patients with Persistent Atrial Fibrillation Taking Oral Verapamil Exhibit a Lower Atrial Frequency on the ECG. Annals of Noninvasive Electrocardiology, 7(2), 92-97. doi:10.1111/j.1542-474x.2002.tb00148.xBRUNDEL, B. (2004). Calpain inhibition prevents pacing-induced cellular remodeling in a HL-1 myocyte model for atrial fibrillation. Cardiovascular Research, 62(3), 521-528. doi:10.1016/j.cardiores.2004.02.007Calkins, H., Kuck, K. H., Cappato, R., Brugada, J., Camm, A. J., Chen, S.-A., … Wilber, D. (2012). 2012 HRS/EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation: Recommendations for Patient Selection, Procedural Techniques, Patient Management and Follow-up, Definitions, Endpoints, and Research Trial Design. Heart Rhythm, 9(4), 632-696.e21. doi:10.1016/j.hrthm.2011.12.016Claycomb, W. C., Lanson, N. A., Stallworth, B. S., Egeland, D. B., Delcarpio, J. B., Bahinski, A., & Izzo, N. J. (1998). HL-1 cells: A cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proceedings of the National Academy of Sciences, 95(6), 2979-2984. doi:10.1073/pnas.95.6.2979Filgueiras-Rama, D., Price, N. F., Martins, R. P., Yamazaki, M., Avula, U. M. R., Kaur, K., … Berenfeld, O. (2012). Long-Term Frequency Gradients During Persistent Atrial Fibrillation in Sheep Are Associated With Stable Sources in the Left Atrium. Circulation: Arrhythmia and Electrophysiology, 5(6), 1160-1167. doi:10.1161/circep.111.969519Haïssaguerre, M., Jaïs, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., … Clémenty, J. (1998). Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. New England Journal of Medicine, 339(10), 659-666. doi:10.1056/nejm199809033391003Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6), 610-621. doi:10.1109/tsmc.1973.4309314Jalife, J. (2010). Deja vu in the theories of atrial fibrillation dynamics. Cardiovascular Research, 89(4), 766-775. doi:10.1093/cvr/cvq364Koivumäki, J. T., Seemann, G., Maleckar, M. M., & Tavi, P. (2014). In Silico Screening of the Key Cellular Remodeling Targets in Chronic Atrial Fibrillation. PLoS Computational Biology, 10(5), e1003620. doi:10.1371/journal.pcbi.1003620Lee, P., Klos, M., Bollensdorff, C., Hou, L., Ewart, P., Kamp, T. J., … Herron, T. J. (2012). Simultaneous Voltage and Calcium Mapping of Genetically Purified Human Induced Pluripotent Stem Cell–Derived Cardiac Myocyte Monolayers. Circulation Research, 110(12), 1556-1563. doi:10.1161/circresaha.111.262535Lieu, D. K., Fu, J.-D., Chiamvimonvat, N., Tung, K. C., McNerney, G. P., Huser, T., … Li, R. A. (2013). Mechanism-Based Facilitated Maturation of Human Pluripotent Stem Cell–Derived Cardiomyocytes. Circulation: Arrhythmia and Electrophysiology, 6(1), 191-201. doi:10.1161/circep.111.973420Liu, X., Shi, H., Tan, H., Wang, X., Zhou, L., & Gu, J. (2009). Decreased Connexin 43 and Increased Fibrosis in Atrial Regions Susceptible to Complex Fractionated Atrial Electrograms. Cardiology, 114(1), 22-29. doi:10.1159/000210398Mansour, M., Mandapati, R., Berenfeld, O., Chen, J., Samie, F. H., & Jalife, J. (2001). Left-to-Right Gradient of Atrial Frequencies During Acute Atrial Fibrillation in the Isolated Sheep Heart. Circulation, 103(21), 2631-2636. doi:10.1161/01.cir.103.21.2631Martins, R. P., Kaur, K., Hwang, E., Ramirez, R. J., Willis, B. C., Filgueiras-Rama, D., … Jalife, J. (2014). Dominant Frequency Increase Rate Predicts Transition from Paroxysmal to Long-Term Persistent Atrial Fibrillation. Circulation, 129(14), 1472-1482. doi:10.1161/circulationaha.113.004742McDowell, K. S., Vadakkumpadan, F., Blake, R., Blauer, J., Plank, G., MacLeod, R. S., & Trayanova, N. A. (2013). Mechanistic Inquiry into the Role of Tissue Remodeling in Fibrotic Lesions in Human Atrial Fibrillation. Biophysical Journal, 104(12), 2764-2773. doi:10.1016/j.bpj.2013.05.025Narayan, S. M., Krummen, D. E., Shivkumar, K., Clopton, P., Rappel, W.-J., & Miller, J. M. (2012). Treatment of Atrial Fibrillation by the Ablation of Localized Sources. Journal of the American College of Cardiology, 60(7), 628-636. doi:10.1016/j.jacc.2012.05.022Noguchi, K., Masumiya, H., Takahashi, K., Kaneko, K., Higuchi, S., Tanaka, H., & Shigenobu, K. (1997). Comparative effects of gallopamil and verapamil on the mechanical and electrophysiological parameters of isolated guinea-pig myocardium. Canadian Journal of Physiology and Pharmacology, 75(12), 1316-1321. doi:10.1139/y97-161Pandit, S. V., Berenfeld, O., Anumonwo, J. M. B., Zaritski, R. M., Kneller, J., Nattel, S., & Jalife, J. (2005). Ionic Determinants of Functional Reentry in a 2-D Model of Human Atrial Cells During Simulated Chronic Atrial Fibrillation. Biophysical Journal, 88(6), 3806-3821. doi:10.1529/biophysj.105.060459Pandit, S. V., & Jalife, J. (2013). Rotors and the Dynamics of Cardiac Fibrillation. Circulation Research, 112(5), 849-862. doi:10.1161/circresaha.111.300158Riccio, M. L., Koller, M. L., & Gilmour, R. F. (1999). Electrical Restitution and Spatiotemporal Organization During Ventricular Fibrillation. Circulation Research, 84(8), 955-963. doi:10.1161/01.res.84.8.955Samie, F. H., Mandapati, R., Gray, R. A., Watanabe, Y., Zuur, C., Beaumont, J., & Jalife, J. (2000). A Mechanism of Transition From Ventricular Fibrillation to Tachycardia. Circulation Research, 86(6), 684-691. doi:10.1161/01.res.86.6.684Samie, F. H., Berenfeld, O., Anumonwo, J., Mironov, S. F., Udassi, S., Beaumont, J., … Jalife, J. (2001). Rectification of the Background Potassium Current. Circulation Research, 89(12), 1216-1223. doi:10.1161/hh2401.100818Smith, A. W., Segar, C. E., Nguyen, P. K., MacEwan, M. R., Efimov, I. R., & Elbert, D. L. (2012). Long-term culture of HL-1 cardiomyocytes in modular poly(ethylene glycol) microsphere-based scaffolds crosslinked in the phase-separated state. Acta Biomaterialia, 8(1), 31-40. doi:10.1016/j.actbio.2011.08.021Tsai, C.-T., Chiang, F.-T., Chen, W.-P., Hwang, J.-J., Tseng, C.-D., Wu, C.-K., … Lin, J.-L. (2011). Angiotensin II induces complex fractionated electrogram in a cultured atrial myocyte monolayer mediated by calcium and sodium-calcium exchanger. Cell Calcium, 49(1), 1-11. doi:10.1016/j.ceca.2010.10.005Tsai, C.-T., Chiang, F.-T., Tseng, C.-D., Yu, C.-C., Wang, Y.-C., Lai, L.-P., … Lin, J.-L. (2011). Mechanical Stretch of Atrial Myocyte Monolayer Decreases Sarcoplasmic Reticulum Calcium Adenosine Triphosphatase Expression and Increases Susceptibility to Repolarization Alternans. Journal of the American College of Cardiology, 58(20), 2106-2115. doi:10.1016/j.jacc.2011.07.039Tuomi, J. M., Tyml, K., & Jones, D. L. (2011). Atrial tachycardia/fibrillation in the connexin 43 G60S mutant (Oculodentodigital dysplasia) mouse. American Journal of Physiology-Heart and Circulatory Physiology, 300(4), H1402-H1411. doi:10.1152/ajpheart.01094.2010White, S. M., Constantin, P. E., & Claycomb, W. C. (2004). Cardiac physiology at the cellular level: use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function. American Journal of Physiology-Heart and Circulatory Physiology, 286(3), H823-H829. doi:10.1152/ajpheart.00986.2003Wijffels, M. C. E. F., Kirchhof, C. J. H. J., Dorland, R., & Allessie, M. A. (1995). Atrial Fibrillation Begets Atrial Fibrillation. Circulation, 92(7), 1954-1968. doi:10.1161/01.cir.92.7.1954Zlochiver, S., Muñoz, V., Vikstrom, K. L., Taffet, S. M., Berenfeld, O., & Jalife, J. (2008). Electrotonic Myofibroblast-to-Myocyte Coupling Increases Propensity to Reentrant Arrhythmias in Two-Dimensional Cardiac Monolayers. Biophysical Journal, 95(9), 4469-4480. doi:10.1529/biophysj.108.13647

    Non-Invasive Electrophysiological Mapping Entropy Predicts Atrial Fibrillation Ablation Efficacy Better Than Clinical Characteristics

    Full text link
    [EN] Success rate of atrial fibrillation (AF) ablation remains far from satisfactory. In this study, a 6 months AF freedom predictive model based on Fuzzy Entropy of non-invasive body surface potential maps is compared with clinical predictors. The study included 29 patients referred for pulmonary vein isolated catheter ablation procedure. Non-invasive electrocardiographic mapping with 54 ECG electrodes was recorded for all patients during the ablation procedure. Six months follow up was used to evaluate the efficacy of the ablation procedure. Predictions based on non-invasive electrocardiographic mappings during adenosine infusion (accuracy: 90%, AUC: 0.93) showed a clear improvement over standard-of-care clinical parameter models (accuracy: 62.1%, AUC: 0. 54). Our results indicate that measurements of electrophysiological complexity of AF signals could improve the clinical practice by predicting the efficacy of AF ablation procedures.This work was supported by the Instituto de Salud Carlos III FEDER (DTS16/00160; PI16/01123; PI17/01059; PI17/01106; EIT-Health 19600 AFFINE)De La Nava, AS.; Fabregat, MC.; Rodrigo, M.; Hernández, I.; Liberos, A.; Fernández-Avilés, F.; Guillem Sánchez, MS.... (2019). Non-Invasive Electrophysiological Mapping Entropy Predicts Atrial Fibrillation Ablation Efficacy Better Than Clinical Characteristics. IEEE. 1-4. https://doi.org/10.22489/CinC.2019.299S1
    corecore